
GradleFx Documentation
Release 0.6

GradleFx

January 13, 2013

CONTENTS

1 Basic Setup 3
1.1 Requirements . 3
1.2 Using the plugin in your project . 3
1.3 Setting up the Flex/Air SDK . 3
1.4 Defining the project type . 3

2 Flex/AIR SDK Auto Install 5
2.1 Overview . 5
2.2 Dependency types . 5
2.3 Apache Flex SDK dependencies . 6

3 Properties/Conventions 7
3.1 Standard Properties . 9
3.2 Complex properties . 10
3.3 Example usage (build.gradle) . 12

4 Dependency Management 13
4.1 Overview . 13
4.2 Project Lib Dependencies . 13

5 Tasks 15
5.1 Overview . 15
5.2 Adding additional logic . 15

6 AIR 17
6.1 Project type . 17
6.2 AIR descriptor file . 17
6.3 Certificate . 17
6.4 Adding files to the AIR package . 18

7 FlexUnit 19
7.1 Setting up testing in GradleFx . 19
7.2 Running the tests . 20
7.3 Customization . 20

8 AsDoc 21
8.1 How to use it . 21

9 Localization 23

i

10 IDE Plugin 25
10.1 Sub-plugins . 25
10.2 FlashBuilder plugin . 25

11 Templates Plugin 27
11.1 Overview . 27
11.2 Sub-plugins . 27
11.3 Scaffold plugin . 27

12 Indices and tables 29

ii

GradleFx Documentation, Release 0.6

Contents:

CONTENTS 1

GradleFx Documentation, Release 0.6

2 CONTENTS

CHAPTER

ONE

BASIC SETUP

1.1 Requirements

• Gradle v1.0

1.2 Using the plugin in your project

To use the plugin in your project, you’ll have to add the following to your build.gradle file:

buildscript {
repositories {

mavenCentral()
}
dependencies {

classpath group: ’org.gradlefx’, name: ’gradlefx’, version: ’0.5’
}

}

apply plugin: ’gradlefx’

Make sure that the buildscript structure is at the top of your build file.

1.3 Setting up the Flex/Air SDK

GradleFx gives you several options to specify the Flex/AIR SDK:

1. set the FLEX_HOME environment variable (convention), this should point to your Flex/AIR SDK instal-
lation.

2. set the flexHome convention property to the location of your Flex/AIR SDK

flexHome = "C:/my/path/to/the/flex/sdk"

3. specify the Flex/AIR SDK as a dependency. See Flex/AIR SDK Auto Install

1.4 Defining the project type

Every project should define its type, this can be one of the following:

3

GradleFx Documentation, Release 0.6

swc: a library project of which the sources will be packaged into a swc file
swf: a Flex web project of which the sources will be packaged into a swf file.
air: a Flex web project of which the sources will be packaged into a air file.

example project type definition:

type = ’swc’

4 Chapter 1. Basic Setup

CHAPTER

TWO

FLEX/AIR SDK AUTO INSTALL

GradleFx gives you the option to automatically download and install the Flex/AIR SDK. You can do this by specifying
either of them as a dependency. This mechanism supports both the Adobe and the Apache Flex SDK.

2.1 Overview

When you specify the SDK’s you’ll always have to use a packaged SDK. The supported archive formats are zip, tar.gz
and tbz2.

What basically happens when you declare the dependency is this:

1. GradleFx will determine the install location of the SDK. By convention it will create an SDK specific directory
in the %GRADLE_USER_HOME%/gradlefx/sdks directory. The name of the SDK specific directory is a hash
of the downloaded sdk archive location.

2. When the SDK isn’t yet installed GradleFx will install it.

3. Once installed it will assign the install location to the flexHome convention property.

GradleFx will always install the AIR SDK in the same directory as the Flex SDK.

Note: A sample project which uses the auto-install feature can be found here: Auto-install sample

2.2 Dependency types

There are a couple of ways to specify the SDK’s as dependencies.

2.2.1 Maven/Ivy Dependency

If you have deployed the SDK archives to a Maven/Ivy repository then you can specify them like this:

dependencies {
flexSDK group: ’org.apache’, name: ’apache-flex-sdk’, version: ’4.8.0’, ext: ’zip’
airSDK group: ’com.adobe’, name: ’AdobeAIRSDK’, version: ’3.4’, ext: ’zip’

}

5

https://github.com/GradleFx/GradleFx-Examples/blob/develop/sdk-autoinstall/build.gradle

GradleFx Documentation, Release 0.6

2.2.2 URL-based Dependency

You can also specify the SDK by referencing a URL. To do this you need to define custom Ivy URL Resolvers. For
example for the Apache Flex SDK this would be something like this:

repositories {
add(new org.apache.ivy.plugins.resolver.URLResolver()) {

name = ’Apache’
// pattern for url http://apache.cu.be/incubator/flex/4.8.0-incubating/binaries/apache-flex-sdk-4.8.0-incubating-bin.zip
addArtifactPattern ’http://apache.cu.be/incubator/flex/4.8.0-incubating/binaries/[module]-[revision]-incubating-bin.[ext]’

}
}

Always make sure to replace the artifact name, version and extension type with [module], [revision] and [ext] in the
pattern. Once you’ve defined the pattern you can define the dependencies like this:

dependencies {
flexSDK group: ’org.apache’, name: ’apache-flex-sdk’, version: ’4.8.0’, ext: ’zip’
airSDK group: ’com.adobe’, name: ’AdobeAIRSDK’, version: ’3.4’, ext: ’zip’

}

2.2.3 File-based dependency

And the last option is to specify the SDK’s as file-based dependencies. This can be done as follows:

dependencies {
flexSDK files(’C:/sdks/flex-4.6-sdk.zip’)
airSDK files(’C:/sdks/air-3.4-sdk.zip’)

}

2.3 Apache Flex SDK dependencies

As you may probably know the Apache Flex SDK requires some dependencies that aren’t included in the SDK archive.
GradleFx handles the installation of these dependencies for you. During the installation some prompts will be shown
to accept some licenses. When you’ve made sure you read the licenses, you can turn the prompts off (e.g. for a
continuous integration build) like this:

sdkAutoInstall {
showPrompts = false

}

6 Chapter 2. Flex/AIR SDK Auto Install

CHAPTER

THREE

PROPERTIES/CONVENTIONS

The GradleFx plugin provides some properties you can set in your build script. Most of them are using conventions,
so you’ll only need to specify them if you want to use your own values.

The following sections describe the properties you can/have to specify in your build script(required means whether
you have to specify it yourself):

7

GradleFx Documentation, Release 0.6

8 Chapter 3. Properties/Conventions

GradleFx Documentation, Release 0.6

3.1 Standard Properties

Property
Name

Convention Re-
quired

Description

gradle-
FxUser-
HomeDir

%GRA-
DLE_USER_HOME%/gradleFx

false The location where GradleFx will store GradleFx specific
files (e.g. installed SDK’s)

flexHome FLEX_HOME environment
var

false The location of your Flex SDK

type n/a true Whether this is a library project or an application. Possible
values: ‘swc’ or ‘swf’

srcDirs [’src/main/actionscript’] false An array of source directories
re-
sourceDirs

[’src/main/resources’] false An array of resource directories (used in the copyresources
task, or included in the SWC for library projects)

testDirs [’src/test/actionscript’] false An array of test source directories
testRe-
sourceDirs

[’src/test/resources’] false An array of test resource directories

include-
Classes

null false Equivalent of the include-classes compiler option. Accepts a
list of classnames

includeS-
ources

null false Equivalent of the include-sources compiler option. Accepts a
list of classfiles and/or directories.

frame-
workLink-
age

‘external’ for swc projects,
‘rsl’ for swf projects and
‘none’ for pure as projects

false How the Flex framework will be linked in the project:
“external”, “rsl”, “merged” or “none”

useDebu-
gRSLSwfs

false false Whether to use the debug framework rsl’s when
frameworkLinkage is rsl

addition-
alCom-
pilerOp-
tions

[] false Additional compiler options you want to specify to the compc
or mxmlc compiler. Can be like [’-player-version=10’,
‘-strict=false’]

fatSwc null false When set to true the asdoc information will be embedded into
the swc so that Adobe Flash Builder can show the
documentation

localeDir ‘src/main/locale’ false Defines the directory in which locale folders are located like
en_US etc.

locales [] false The locales used by your application. Can be something like
[’en_US’, ‘nl_BE’]

main-
Class

‘Main’ false This property is required for the mxmlc compiler. It defines
the main class of your application. You can specify your own
custom file like ‘org/myproject/MyApplication.mxml’ or
‘org.myproject.MyApplication’

output ${project.name} false This is the name of the swc/swf that will be generated by the
compile task

jvmArgu-
ments

[] false You can use this property to specify jvm arguments which are
used during the compile task. Only one jvm argument per
array item: e.g. jvmArguments =
[’-Xmx1024m’,’-Xms512m’]

play-
erVersion

‘10.0’ false Defines the flash player version

html-
Wrapper

complex property false This is a complex property which contains properties for the
createHtmlWrapper task

flexUnit complex property false This is a complex property which contains properties for the
flexUnit task

air complex property false This is a complex property which contains properties for AIR
projects

asdoc complex property false This is a complex property which contains properties for the
asdoc task

sdkAu-
toInstall

complex property false This is a complex property which contains properties for the
SDK auto install feature

3.1. Standard Properties 9

GradleFx Documentation, Release 0.6

Note: All the available compiler options for the mxmlc and compc compiler are available here Compc
options , Mxmlc options

3.2 Complex properties

3.2.1 air

Prop-
erty
Name

Convention Re-
quired

Description

keystore “${project.name}.p12”false The name of the certificate which will be used to sign the air package.
Uses the project name by convention.

storepass null true The password of the certificate
applica-
tionDe-
scriptor

“src/main/actionscript/${project.name}.xml”false The location of the air descriptor file. Uses the project name by
convention for this file.

include-
File-
Trees

null false A list of FileTree objects which reference the files to include into the
AIR package, like application icons which are specified in your
application descriptor. Can look like this: air.includeFileTrees =
[fileTree(dir: ‘src/main/actionscript/’, include: ‘assets/appIcon.png’)]

3.2.2 htmlWrapper

Prop-
erty
Name

Convention Re-
quired

Description

title project.descriptionfalse The title of the html page
file “${project.name}.html”false Name of the html file
per-
centHeight

‘100’ false Height of the swf in the html page

per-
centWidth

‘100’ false Width of the swf in the html page

applica-
tion

project.name false Name of the swf object in the HTML wrapper

swf project.name false The name of the swf that is embedded in the HTML page. The ‘.swf’
extension is added automatically, so you don’t need to specify it.

history ‘true’ false Set to true for deeplinking support.
output project.buildDir false Directory in which the html wrapper will be generated.
ex-
pressIn-
stall

‘true’ false use express install

version-
Detection

‘true’ false use version detection

10 Chapter 3. Properties/Conventions

http://help.adobe.com/en_US/flex/using/WS2db454920e96a9e51e63e3d11c0bf69084-7a92.html
http://help.adobe.com/en_US/flex/using/WS2db454920e96a9e51e63e3d11c0bf69084-7a92.html
http://help.adobe.com/en_US/flex/using/WS2db454920e96a9e51e63e3d11c0bf69084-7a80.html

GradleFx Documentation, Release 0.6

3.2.3 flexUnit

(Since GradleFx uses the FlexUnit ant tasks it also uses the same properties, more information about
the properties specified in this table can be found in the “Property Descriptions” section on this page:
http://docs.flexunit.org/index.php?title=Ant_Task)

Prop-
erty
Name

Convention Re-
quired

Description

player ‘flash’ false Whether to execute the test SWF against the Flash Player or ADL. See
the “Property Descriptions” section on this page for more information:
http://docs.flexunit.org/index.php?title=Ant_Task

com-
mand

FLASH_PLAYER_EXE
environment
variable

false The path to the Flash player executable which will be used to run the
tests

swf “${project.buildDirName}/${testOutput}.swf”false Location of the generated swf files which runs the tests
toDir “${project.buildDirName}/reports”false Directory to which the test result reports are written
work-
ingDir

project.path false Directory to which the task should copy the resources created during
compilation.

halton-
failure

‘false’ false Whether the execution of the tests should stop once a test has failed

ver-
bose

‘false’ false Whether the tasks should output information about the test results

local-
Trusted

‘true’ false The path specified in the ‘swf’ property is added to the local FlashPlayer
Trust when this property is set to true.

port ‘1024’ false On which port the task should listen for test results
buffer ‘262144’ false Data buffer size (in bytes) for incoming communication from the Flash

movie to the task. Default should in general be enough, you could
possibly increase this if your tests have lots of failures/errors.

time-
out

‘60000’ false How long (in milliseconds) the task waits for a connection with the
Flash player

failure-
prop-
erty

‘flexUnitFailed’ false If a test fails, this property will be set to true

head-
less

‘false’ false Allows the task to run headless when set to true.

display ‘99’ false The base display number used by Xvnc when running in headless mode.
in-
cludes

[’**/*Test.as’] false Defines which test classes are executed when running the tests

ex-
cludes

[] false Defines which test classes are excluded from execution when running
the tests

3.2.4 asdoc

Property Name Convention Required Description
outputDir ‘doc’ false The directory in which the asdoc documentation will be created
additionalASDocOptions [] false Additional options for the asdoc compiler.

3.2. Complex properties 11

http://docs.flexunit.org/index.php?title=Ant_Task
http://docs.flexunit.org/index.php?title=Ant_Task

GradleFx Documentation, Release 0.6

3.2.5 sdkAutoInstall

Property
Name

Con-
ven-
tion

Re-
quired

Description

show-
Prompts

true false Whether to show prompts during the installation or let it run in full auto mode.
Make sure you agree with all the licenses before turning this off

Note: All the available asdoc options (for Flex 4.6) can be found here: asdoc compiler options

3.3 Example usage (build.gradle)

buildscript {
repositories {

mavenLocal()
}
dependencies {

classpath group: ’org.gradlefx’, name: ’gradlefx’, version: ’0.5’
}

}

apply plugin: ’gradlefx’

flexHome = System.getenv()[’FLEX_SDK_LOCATION’] //take a custom environment variable which contains the Flex SDK location

srcDirs = [’/src/main/flex’]

additionalCompilerOptions = [
’-player-version=10’,
’-strict=false’

]

htmlWrapper {
title ’My Page Title’
percentHeight ’80’
percentWidth ’80’

}

12 Chapter 3. Properties/Conventions

http://help.adobe.com/en_US/flex/using/WSd0ded3821e0d52fe1e63e3d11c2f44bc36-7ffa.html#WSd0ded3821e0d52fe1e63e3d11c2f44bb7b-7feb

CHAPTER

FOUR

DEPENDENCY MANAGEMENT

4.1 Overview

The GradleFx plugin adds the following configurations to your project:

• merged: This configuration can be used for dependencies that should be merged in the SWC/SWF. Same as
-compiler.library-path

• internal: The dependency content will be merged in the SWC/SWF. Same as -compiler.include-libraries

• external: The dependency won’t be included in the SWC/SWF. Same as -compiler.external-library-path

• rsl: The SWF will have a reference to load the dependency at runtime. Same as -runtime-shared-library-path

• test: This is for dependencies used in unit tests

• theme: The theme that will be used by the application. Same as -theme

You can specify your dependencies like this:

dependencies {
external group: ’org.springextensions.actionscript’, name: ’spring-actionscript-core’, version: ’1.2-SNAPSHOT’, ext: ’swc’
external group: ’org.as3commons’, name: ’as3commons-collections’, version: ’1.1’, ext: ’swc’
external group: ’org.as3commons’, name: ’as3commons-eventbus’, version: ’1.1’, ext: ’swc’

merged group: ’org.graniteds’, name: ’granite-swc’, version: ’2.2.0.SP1’, ext: ’swc’
merged group: ’org.graniteds’, name: ’granite-essentials-swc’, version: ’2.2.0.SP1’, ext: ’swc’

theme group: ’my.organization’, name: ’fancy-theme’, version: ’1.0’, ext: ’swc’
}

4.2 Project Lib Dependencies

You can also add dependencies to other projects, as described here in the Gradle documentation:
http://www.gradle.org/current/docs/userguide/userguide_single.html#sec:project_jar_dependencies

13

http://www.gradle.org/current/docs/userguide/userguide_single.html#sec:project_jar_dependencies

GradleFx Documentation, Release 0.6

14 Chapter 4. Dependency Management

CHAPTER

FIVE

TASKS

5.1 Overview

The GradleFx plugin adds the following tasks to your project:

Task name Depends on Description
clean n/a Deletes the build directory
compileFlex copyre-

sources
Creates a swc or swf file from your code. The ‘type’ property defines the
type of file

package compile Packages the generated swf file into an .air package
copyresources n/a Copies the resources from the source ‘resources’ directory to the build

directory
publish n/a Copies the files from the build directory to the publish directory.
createHtmlWrap-
per

n/a Creates an HTML wrapper for the project’s swf

test testCompile Runs the FlexUnit tests
asdoc testCompile Creates asdoc documentation for your sources

The Flashbuilder plugin adds the following tasks to your project:

Task name Depends on Description
flashbuilder n/a Creates the Adobe Flash Builder project files
flashbuilderClean n/a Deletes the Adobe Flash Builder project files

The Scaffold plugin adds the following tasks to your project:

Task name Depends on Description
scaffold n/a Generates directory structure and main application class

5.2 Adding additional logic

Sometimes you may want to add custom logic right after or before a task has been executed. If you want to add some
logging before or after the compile task, you can just do this:

compile.doFirst {
println "this gets printed before the compile task starts"

}

compile.doLast {
println "this gets printed after the compile task has been completed"

}

15

GradleFx Documentation, Release 0.6

16 Chapter 5. Tasks

CHAPTER

SIX

AIR

This page describes how you need to configure your AIR project. Only a few things are needed for this.

Note: There’s a working example available in the GradleFx examples project: https://github.com/GradleFx/GradleFx-
Examples/tree/master/air-single-project

6.1 Project type

First you’ll need to specify the project type, which in this case is ‘air’. You do this as follows:

type = ’air’

6.2 AIR descriptor file

Then you’ll need an AIR descriptor file (like in every AIR project). If you give this file the same name as your project
and put it in the default source directory (src/main/actionscript) then you don’t have to configure anything because this
is the convention. If you want to deviate from this convention you can specify the location like this:

air {
applicationDescriptor ’src/main/resources/airdescriptor.xml’

}

6.3 Certificate

Then you’ll need a certificate to sign the AIR package. This certificate has to be a *.p12 file. GradleFx uses the
project name for the certificate by convention, so if your certificate is located at the root of your project and has
a %myprojectname%.p12 filename; then you don’t have to configure anything. If you want to deviate from this
convention, then you can do this by overriding the air.keystore property:

air {
keystore ’certificate.p12’

}

You also need to specify the password for the certificate. This property is required. You can specify this as follows:

17

https://github.com/GradleFx/GradleFx-Examples/tree/master/air-single-project
https://github.com/GradleFx/GradleFx-Examples/tree/master/air-single-project

GradleFx Documentation, Release 0.6

air {
storepass ’mypassword’

}

If you don’t want to put the password in the build file then you can use the prop-
erties system of Gradle, see the Gradle documentation for more information about this:
http://www.gradle.org/docs/current/userguide/tutorial_this_and_that.html#sec:gradle_properties_and_system_properties

6.4 Adding files to the AIR package

In most cases you will want to add some files to your AIR package, like application icons which are being specified in
your application descriptor like this:

<icon>
<image32x32>assets/appIcon.png</image32x32>

</icon>

Only specifying those icons in your application descriptor won’t do it for the compiler, so you need to provide them
to it. With GradleFx you can do that with the includeFileTrees property, which looks like this:

air {
includeFileTrees = [

fileTree(dir: ’src/main/actionscript/’, include: ’assets/appIcon.png’)
]

}

You have to make sure that the ‘include’ part always has the same name as the one specified in your application descrip-
tor, otherwise the compiler won’t recognize it. The fileTree also accepts patterns and multiple includes, more info about
this can be found in the Gradle documentation: http://gradle.org/docs/current/userguide/working_with_files.html

18 Chapter 6. AIR

http://www.gradle.org/docs/current/userguide/tutorial_this_and_that.html#sec:gradle_properties_and_system_properties
http://gradle.org/docs/current/userguide/working_with_files.html

CHAPTER

SEVEN

FLEXUNIT

GradleFx supports automatically running tests written with FlexUnit 4.1.

7.1 Setting up testing in GradleFx

First you need to specify the FlexUnit dependencies. You can download the required FlexUnit libraries from their site
and then deploy them on your repository (recommended) or use file-based dependencies. Once you’ve done that you
have to define them as dependencies in your build file.

1. When you have deployed the artifacts on your own repository:

dependencies {
test group: ’org.flexunit’, name: ’flexunit-tasks’, version: ’4.1.0-8’, ext: ’swc’
test group: ’org.flexunit’, name: ’flexunit’, version: ’4.1.0-8’, ext: ’swc’
test group: ’org.flexunit’, name: ’flexunit-cilistener’, version: ’4.1.0-8’, ext: ’swc’

}

2. When you have FlexUnit installed on your machine:

def flexunitHome = System.getenv()[’FLEXUNIT_HOME’] //FLEXUNIT_HOME is an environment variable referencing the FlexUnit install location
dependencies {

test files("${flexunitHome}/flexunit-4.1.0-8-flex_4.1.0.16076.swc",
"${flexunitHome}/flexUnitTasks-4.1.0-8.jar",
"${flexunitHome}/flexunit-cilistener-4.1.0-8-4.1.0.16076.swc")

}

Then you’ll need to specify the location of the Flash Player executable. GradleFx uses the FLASH_PLAYER_EXE
environment variable by convention which should contain the path to the executable. If you don’t want to use this
environment variable you can override this with the ‘flexunit.command’ property. You can download the executable
from here (these links may get out of date, look for the Flash Player standalone/projector builds on the Adobe site):

• For Windows

• For Mac

• For Linux

And that’s basically it in terms of setup when you follow the following conventions:

• Use src/test/actionscript as the source directory for your test classes.

• Use src/test/resources as the directory for your test resources.

• You end all your test class names with “Test.as”

GradleFx will by convention execute all the *Test.as classes in the test source directory when running the tests.

19

http://download.macromedia.com/pub/flashplayer/updaters/10/flashplayer_10_sa_debug.exe
http://download.macromedia.com/pub/flashplayer/updaters/10/flashplayer_10_sa_debug.app.zip
http://download.macromedia.com/pub/flashplayer/updaters/10/flashplayer_10_sa_debug.tar.gz

GradleFx Documentation, Release 0.6

7.2 Running the tests

You can run the FlexUnit tests by executing the “gradle test” command on the command-line.

7.3 Customization

7.3.1 Changing the source/resource directories

You can change these directories by specifying the following properties like this:

testDirs = [’src/testflex’]
testResourceDirs = [’src/testresources’]

7.3.2 Include/Exclude test classes

You can include or exclude test classes which are being run by specifying a pattern to some GradleFx properties. To
specify the includes you can use the flexUnit.includes property:

flexUnit {
includes = [’**/Test*.as’] //will include all actionscript classes which start with ’Test’

}

To specify the excludes you can use the flexUnit.excludes property:

flexUnit {
excludes = [’**/*IntegrationTest.as’]

}

7.3.3 Other customizations

There are a lot more properties available on flexUnit.*, all these can be found on the properties description page.

20 Chapter 7. FlexUnit

CHAPTER

EIGHT

ASDOC

GradleFx has support for generating asdoc documentation for your swc-based projects.

8.1 How to use it

No specific configuration is needed for this, you can simply execute the “gradle asdoc” command and it will create a
doc folder in your project which will contain the html documentation files.

8.1.1 Creating a fat swc

A fat swc is a swc file which has asdoc information embedded in it so that Adobe Flash Builder can show the doc-
umentation while you’re working in it. GradleFx has a handly property for this which, when turned on, will always
create a fat swc when you compile your project. This property can be set like this:

fatSwc = true

8.1.2 Customizing the asdoc generation

GradleFx also provides some properties which can be used to customize the asdoc generation. One of them is the
asdoc.outputDir property, which allows you to specify a different destination directory for the asdoc documentation.
This property can be used as follows:

asdoc {
outputDir ’documentation’ //will create the documentation in the %projectdir%/documentation folder

}

Another property which allows the most customization is the asdoc.additionalASDocOptions property. It can be used
like the additionalCompilerOptions, but this one accepts asdoc compiler options. These options can be found here (for
Flex 4.6): asDoc compiler options

The property can be used as follows:

asdoc {
additionalASDocOptions = [

’-strict=false’,
’-left-frameset-width 200’

]
}

21

http://help.adobe.com/en_US/flex/using/WSd0ded3821e0d52fe1e63e3d11c2f44bc36-7ffa.html#WSd0ded3821e0d52fe1e63e3d11c2f44bb7b-7feb

GradleFx Documentation, Release 0.6

22 Chapter 8. AsDoc

CHAPTER

NINE

LOCALIZATION

GradleFx provides an easy way to specify locales instead of having to specify the compiler arguments. The two
convention properties of importance are:

• localeDir: This defines the directory in which locale folders are located (relative from the project root). The
convention here is ‘src/main/locale’

• locales: Defines a list of locales used by your application, like en_US, nl_BE, etc. This property has no default.

Let’s say you want to support the en_GB and nl_BE locales. Then you could have the following directory structure:

• %PROJECT_ROOT%/src/main/locale/en_GB/resources.properties

• %PROJECT_ROOT%/src/main/locale/nl_BE/resources.properties

Because ‘src/main/locale’ is already the default value for the localeDir property you only have to specify the locales,
like this:

locales = [’en_GB’, ’nl_BE’]

You can also change the default value of the localeDir in case you don’t want to follow the convention like this:

localeDir = ’locales’ //directory structure will then look like this: %PROJECT_ROOT%/locales/en_GB

23

GradleFx Documentation, Release 0.6

24 Chapter 9. Localization

CHAPTER

TEN

IDE PLUGIN

This feature mimics the behavior of the ‘eclipse’, ‘idea’, etc. Gradle plugins for Flex projects. It generates IDE
configuration files and puts the dependencies from the Gradle/Maven cache on the IDE’s build path. It consists of
subplugins for all known Flex IDE’s which can be applied separately. As of GradleFx v0.5 only the FlashBuilder
subplugin has been implemented.

If you want support for all known IDE’s load the plugin like this:

apply plugin: ’ide’

In any other case just apply the required subplugins.

10.1 Sub-plugins

There is a plugin for each of the following IDE’s; each plugin has its matching task:

IDE load plugin execute task

IDE Load plugin Execute task
FDT apply plugin: ‘fdt’ gradle fdt
FlashBuilder apply plugin: ‘flashbuilder’ gradle flashbuilder
FlashDevelop apply plugin: ‘flashdevelop’ gradle flashdevelop
FlashBuilder apply plugin: ‘flexbuilder’ gradle flexbuilder
IntelliJ IDEA apply plugin: ‘ideafx’ gradle idea

The IDEA plugin was named ideafx to avoid conflicts with the existing ‘java’ idea plugin. All these plugins exist,
however only flashbuilder is operational in GradleFx v0.5.

Every IDE plugin depends on the Scaffold plugin (cf. Templates Plugin) that generates the directory structure and the
main application file.

Each of these plugins also has a matching clean task; for instance you could remove all the FlashBuilder configuration
files from a project by executing gradle cleanFlashbuilder.

10.2 FlashBuilder plugin

Load the plugin:

apply plugin: ’flashbuilder’

Run the associated task:

25

GradleFx Documentation, Release 0.6

gradle flashbuilder

With all conventions the output for a swf application might be something like this:

:my-first-app:scaffold
Creating directory structure

src/main/actionscript
src/main/resources
src/test/actionscript
src/test/resources

Creating main class
src/main/actionscript/Main.mxml

::my-first-app:flashbuilder
Verifying project properties compatibility with FlashBuilder

OK
Creating FlashBuilder project files

.project

.actionScriptProperties

.flexProperties

BUILD SUCCESSFULL

To clean the project, i.e. remove all FlashBuilder configuration files:

gradle cleanFlashbuilder

26 Chapter 10. IDE Plugin

CHAPTER

ELEVEN

TEMPLATES PLUGIN

11.1 Overview

The Templates plugin is a feature similar to gradle-templates that can generate default directory structures and/or
classes. As of GradleFx v0.5 this plugin has only very partially been implemented. Actually only the automatic
generation of directory structure and the main application file (+ the descriptor file for AIR projects) is currently
available, as it is a dependency required by the IDE Plugin. Further development is not on our priority list for the time
being.

Load the plugin like so:

apply plugin: ’templates’

11.2 Sub-plugins

As of GradleFx v0.5 only one sub-plugin exists:

• Scaffold plugin: generates directory structure and main application class

This means that at the moment apply plugin: ‘templates’ and apply plugin: ‘scaffold’ will both result in the same tasks
being available.

11.3 Scaffold plugin

Load the plugin:

apply plugin: ’scaffold’

The scaffold task is now available to you. It is the only available task for now. To use it execute gradle
scaffold at the command line.

With all conventions this will result in the following output for a swf project:

$ gradle scaffold
:my-first-app:scaffold
Creating directory structure

src/main/actionscript
src/main/resources
src/test/actionscript
src/test/resources

27

https://launchpad.net/gradle-templates

GradleFx Documentation, Release 0.6

Creating main class
src/main/actionscript/Main.mxml

BUILD SUCCESSFUL

11.3.1 Application descriptor

In an air or mobile project an application descriptor file will also be created:

src/main/actionscript/Main-app.xml

11.3.2 Localization

If you’ve defined some locales in your build script (say locales = [’nl_BE’, ’fr_BE’]), directories for
these locales will also be created:

src/main/locale/nl_BE
src/main/locale/fr_BE

28 Chapter 11. Templates Plugin

CHAPTER

TWELVE

INDICES AND TABLES

• genindex

• modindex

• search

29

	Basic Setup
	Requirements
	Using the plugin in your project
	Setting up the Flex/Air SDK
	Defining the project type

	Flex/AIR SDK Auto Install
	Overview
	Dependency types
	Apache Flex SDK dependencies

	Properties/Conventions
	Standard Properties
	Complex properties
	Example usage (build.gradle)

	Dependency Management
	Overview
	Project Lib Dependencies

	Tasks
	Overview
	Adding additional logic

	AIR
	Project type
	AIR descriptor file
	Certificate
	Adding files to the AIR package

	FlexUnit
	Setting up testing in GradleFx
	Running the tests
	Customization

	AsDoc
	How to use it

	Localization
	IDE Plugin
	Sub-plugins
	FlashBuilder plugin

	Templates Plugin
	Overview
	Sub-plugins
	Scaffold plugin

	Indices and tables

