
GradleFx Documentation
Release 1.5.0

GradleFx

Sep 24, 2019

Contents

1 Where to start 3

2 Basic Setup 5
2.1 Requirements . 5
2.2 Using the plugin in your project . 5
2.3 Setting up the Flex/Air SDK . 5
2.4 Defining the project type . 6
2.5 Flex or pure Actionscript? . 6

3 Flex/AIR SDK Auto Install 7
3.1 Overview . 7
3.2 Dependency types . 7
3.3 Apache Flex SDK dependencies . 9

4 Properties/Conventions 11
4.1 Standard Properties . 13
4.2 Complex properties . 14
4.3 Example usage (build.gradle) . 19

5 Dependency Management 21
5.1 Overview . 21
5.2 Project Lib Dependencies . 22

6 Tasks 23
6.1 Overview . 23
6.2 Adding additional logic . 25

7 AIR 27
7.1 Project type . 27
7.2 AIR descriptor file . 27
7.3 Certificate . 27
7.4 Adding files to the AIR package . 28

8 Mobile 31
8.1 General setup . 31
8.2 Android . 31
8.3 iOS . 32

i

8.4 Tasks . 33
8.5 Using native extensions (ANE) . 34
8.6 Choosing a packaging mode . 34

9 FlexUnit 35
9.1 Setting up testing in GradleFx . 35
9.2 Running the tests . 36
9.3 Skipping the tests . 36
9.4 Customization . 36
9.5 FAQ . 38

10 Html Wrapper 39
10.1 Usage . 39

11 AsDoc 41
11.1 How to use it . 41

12 Localization 43

13 IDE Plugin 45
13.1 Sub-plugins . 45
13.2 FlashBuilder plugin . 45
13.3 IDEA Intellij plugin . 46

14 Templates Plugin 49
14.1 Overview . 49
14.2 Sub-plugins . 49
14.3 Scaffold plugin . 49

15 Indices and tables 51

ii

GradleFx Documentation, Release 1.5.0

Contents:

Contents 1

GradleFx Documentation, Release 1.5.0

2 Contents

CHAPTER 1

Where to start

1. GradleFx is based on Gradle, so if you’re completely new to Gradle start by going through their documentation:
http://www.gradle.org/documentation

This documentation will give you a good overview of Gradle’s features and some essential concepts
which you’ll need to get started with GradleFx.

2. Once you have a good comprehension of Gradle, start going through the rest of the GradleFx documentation.
This will save you some time afterwards.

3. After all this, we have a set of sample projects for each kind of project. These will show you how to use the
GradleFx properties and implement certain mechanisms. These can be found here https://github.com/GradleFx/
GradleFx-Examples

4. If you still have some questions, feedback, or having a problem while creating your build script, please let us
know on our support forum: http://support.gradlefx.org/

5. Found a bug while implementing your build script? Log it here: https://github.com/GradleFx/GradleFx/issues

3

http://www.gradle.org/documentation
https://github.com/GradleFx/GradleFx-Examples
https://github.com/GradleFx/GradleFx-Examples
http://support.gradlefx.org/
https://github.com/GradleFx/GradleFx/issues

GradleFx Documentation, Release 1.5.0

4 Chapter 1. Where to start

CHAPTER 2

Basic Setup

2.1 Requirements

• Gradle v2.4

• Minimum Flex 4.x

2.2 Using the plugin in your project

To use the plugin in your project, you’ll have to add the following to your build.gradle file:

buildscript {
repositories {

mavenCentral()
}
dependencies {

classpath group: 'org.gradlefx', name: 'gradlefx', version: '1.4.0'
}

}

apply plugin: 'gradlefx'

Make sure that the buildscript structure is at the top of your build file.

2.3 Setting up the Flex/Air SDK

Depending on your project, you’ll need the Flex and/or AIR SDK. GradleFx gives you several options to specify the Flex/AIR SDK:

1. set the FLEX_HOME environment variable (convention), this should point to your Flex/AIR SDK instal-
lation.

5

GradleFx Documentation, Release 1.5.0

2. set the flexHome convention property to the location of your Flex/AIR SDK

flexHome = "C:/my/path/to/the/flex/sdk"

3. specify the Flex/AIR SDK as a dependency. See Flex/AIR SDK Auto Install

2.4 Defining the project type

Every project should define its type, this can be one of the following:
swc: a library project of which the sources will be packaged into a swc file
swcAir: similar to the ‘swc’ type, but this automatically adds the air libraries (by using the air-config.xml file
provided in the SDK)
swf: a Flex web project of which the sources will be packaged into a swf file.
air: a Flex web project of which the sources will be packaged into a air file.
mobile: a Flex mobile project of which the sources will be packaged into an apk or ipa file.

example project type definition:

type = 'swc'

2.5 Flex or pure Actionscript?

GradleFx also needs to know whether you want to use the Flex framework, since you can also create an Actionscript-
only project. Several situations are possible here:

• When you only use the AIR SDK it’s easy, you don’t have to do anything special. It will be an Actionscript-only
project by default and no Flex framework linkage will happen. GradleFx will also use the ASC 2.0 compiler
provided in the new AIR SDKs by default.

• When using the Flex SDK (with or without the AIR SDK), by default GradleFx (and the compiler) will assume
you’ll use the Flex framework. However, when you want to build an Actionscript-only project that just uses the
Flex SDK compilers, then you have to set framework linkage to ‘none’ as follows:

frameworkLinkage = 'none'

6 Chapter 2. Basic Setup

CHAPTER 3

Flex/AIR SDK Auto Install

GradleFx gives you the option to automatically download and install the Flex/AIR SDK. You can do this by specifying
either of them as a dependency. This mechanism supports both the Adobe and the Apache Flex SDK.

3.1 Overview

When you specify the SDK’s you’ll always have to use a packaged SDK. The supported archive formats are zip, tar.gz
and tbz2.

What basically happens when you declare the dependency is this:

1. GradleFx will determine the install location of the SDK. By convention it will create an SDK specific directory
in the %GRADLE_USER_HOME%/gradlefx/sdks directory. The name of the SDK specific directory is a hash
of the downloaded sdk archive location.

2. When the SDK isn’t yet installed GradleFx will install it.

3. Once installed it will assign the install location to the flexHome convention property.

GradleFx will always install the AIR SDK in the same directory as the Flex SDK.

Note: A sample project which uses the auto-install feature can be found here: Auto-install sample

3.2 Dependency types

There are a couple of ways to specify the SDK’s as dependencies.

3.2.1 Maven/Ivy Dependency

If you have deployed the SDK archives to a Maven/Ivy repository then you can specify them like this:

7

https://github.com/GradleFx/GradleFx-Examples/blob/develop/sdk-autoinstall/build.gradle

GradleFx Documentation, Release 1.5.0

dependencies {
flexSDK group: 'org.apache', name: 'apache-flex-sdk', version: '4.9.0', ext:

→˓'zip'
airSDK group: 'com.adobe', name: 'AdobeAIRSDK', version: '3.4', ext: 'zip'

}

3.2.2 URL-based Dependency

You can also specify the SDK by referencing a URL. To do this you need to define custom Ivy URL Resolvers. For
example for the Apache Flex SDK this would be something like this:

repositories {
ivy {

name 'Apache Flex'
// pattern for url http://archive.apache.org/dist/flex/4.9.0/binaries/

→˓apache-flex-sdk-4.9.0-bin.zip
artifactPattern 'http://archive.apache.org/dist/flex/[revision]/

→˓binaries/[module]-[revision]-bin.[ext]'
}
ivy {

name 'Adobe Air SDK'
artifactPattern 'http://download.macromedia.com/air/win/download/

→˓[revision]/[module].[ext]'
}

}

Note: Always make sure to replace the artifact name, version and extension type with [module], [revision] and [ext]
in the pattern.

Once you’ve defined the pattern you can define the dependencies like this:

dependencies {
flexSDK group: 'org.apache', name: 'apache-flex-sdk', version: '4.9.0', ext:

→˓Os.isFamily(Os.FAMILY_WINDOWS) ? 'zip' : 'tar.gz'
airSDK group: 'com.adobe', name: 'AdobeAIRSDK', version: '3.4', ext: Os.

→˓isFamily(Os.FAMILY_WINDOWS) ? 'zip' : 'tbz2'
}

3.2.3 File-based dependency

And the last option is to specify the SDK’s as file-based dependencies. This can be done as follows:

dependencies {
flexSDK files('C:/sdks/flex-4.6-sdk.zip')
airSDK files('C:/sdks/air-3.4-sdk.zip')

}

8 Chapter 3. Flex/AIR SDK Auto Install

GradleFx Documentation, Release 1.5.0

3.3 Apache Flex SDK dependencies

As you may probably know the Apache Flex SDK requires some dependencies that aren’t included in the SDK archive.
GradleFx handles the installation of these dependencies for you. During the installation some prompts will be shown
to accept some licenses. When you’ve made sure you read the licenses, you can turn the prompts off (e.g. for a
continuous integration build) like this:

sdkAutoInstall {
showPrompts = false

}

3.3. Apache Flex SDK dependencies 9

GradleFx Documentation, Release 1.5.0

10 Chapter 3. Flex/AIR SDK Auto Install

CHAPTER 4

Properties/Conventions

The GradleFx plugin provides some properties you can set in your build script. Most of them are using conventions,
so you’ll only need to specify them if you want to use your own values.

The following sections describe the properties you can/have to specify in your build script(required means whether
you have to specify it yourself):

11

GradleFx Documentation, Release 1.5.0

12 Chapter 4. Properties/Conventions

GradleFx Documentation, Release 1.5.0

4.1 Standard Properties

Prop-
erty
Name

Convention Re-
quired

Description

gradle-
FxUser-
Home-
Dir

%GRA-
DLE_USER_HOME%/gradleFx

false The location where GradleFx will store GradleFx specific files (e.g.
installed SDK’s)

flex-
Home

FLEX_HOME environ-
ment var

false The location of your Flex SDK

flexSd-
kName

false The name you want to give to the Flex SDK Primarily used in the
IDE integration

type n/a true Whether this is a library project or an application. Possible values:
‘swc’, ‘swcAir’ , ‘swf’, ‘air’ or ‘mobile’

srcDirs [‘src/main/actionscript’] false An array of source directories
re-
sourceDirs

[‘src/main/resources’] false An array of resource directories (used in the copyresources task, or
included in the SWC for library projects)

testDirs [‘src/test/actionscript’] false An array of test source directories
testRe-
sourceDirs

[‘src/test/resources’] false An array of test resource directories

include-
Classes

null false Equivalent of the include-classes compiler option. Accepts a list of
classnames

in-
cludeS-
ources

null false Equivalent of the include-sources compiler option. Accepts a list of
classfiles and/or directories.

frame-
workLink-
age

‘external’ for swc
projects, ‘rsl’ for swf
projects and ‘none’ for
pure as projects

false How the Flex framework will be linked in the project: “external”,
“rsl”, “merged” or “none”

useDe-
bu-
gRSLSwfs

false false Whether to use the debug framework rsl’s when frameworkLinkage
is rsl

addi-
tional-
Com-
pilerOp-
tions

[] false Additional compiler options you want to specify to the compc or
mxmlc compiler. Can be like [‘-target-player=10’, ‘-strict=false’]

fatSwc null false When set to true the asdoc information will be embedded into the
swc so that Adobe Flash Builder can show the documentation

lo-
caleDir

‘src/main/locale’ false Defines the directory in which locale folders are located like en_US
etc.

locales [] false The locales used by your application. Can be something like
[‘en_US’, ‘nl_BE’]

main-
Class

‘Main’ false This property is required for the mxmlc compiler. It de-
fines the main class of your application. You can specify
your own custom file like ‘org/myproject/MyApplication.mxml’ or
‘org.myproject.MyApplication’

output ${project.name} false This is the name of the swc/swf that will be generated by the com-
pile task

jvmAr-
guments

[] false You can use this property to specify jvm arguments which are used
during the compile task. Only one jvm argument per array item:
e.g. jvmArguments = [‘-Xmx1024m’,’-Xms512m’]

play-
erVer-
sion

‘10.0’ false Defines the flash player version

html-
Wrap-
per

complex property false This is a complex property which contains properties for the create-
HtmlWrapper task

flexUnit complex property false This is a complex property which contains properties for the flexU-
nit task

air complex property false This is a complex property which contains properties for AIR
projects

asdoc complex property false This is a complex property which contains properties for the asdoc
task

sdkAu-
toInstall

complex property false This is a complex property which contains properties for the SDK
auto install feature

4.1. Standard Properties 13

GradleFx Documentation, Release 1.5.0

Note: All the available compiler options for the mxmlc and compc compiler are available here Compc
options , Mxmlc options

4.2 Complex properties

4.2.1 air

Prop-
erty
Name

Convention Re-
quired

Description

key-
store

“${project.name}.p12”false The name of the certificate which will be used to sign the air package. Uses the
project name by convention.

storepass null true The password of the certificate
ap-
plica-
tion-
De-
scrip-
tor

“src/main/actionscript/${project.name}.xml”false The location of the air descriptor file. Uses the project name by convention for
this file.

main-
SwfDir

root directory
of the pack-
age

false The directory in the package where the output swf file will be placed, for example
‘foo/bar’

in-
clude-
File-
Trees

null false A list of FileTree objects which reference the files to include into the AIR pack-
age, like application icons which are specified in your application descriptor. Can
look like this: air.includeFileTrees = [fileTree(dir: ‘src/main/actionscript/’, in-
clude: ‘assets/appIcon.png’)]

fileOp-
tions

[] false Similar to includeFileTrees, but allows more flexibility without the convenience
of a FileTree. It’s most important use is to specify directories instead of individual
files. air.fileOptions = [‘-C’, ‘src/main/actionscript/’, ‘sound’]

tsa n/a false URL of an RFC3161-compliant timestamp server to time-stamp the digital signa-
ture.

14 Chapter 4. Properties/Conventions

http://help.adobe.com/en_US/flex/using/WS2db454920e96a9e51e63e3d11c0bf69084-7a80.html
http://help.adobe.com/en_US/flex/using/WS2db454920e96a9e51e63e3d11c0bf69084-7a80.html
http://help.adobe.com/en_US/flex/using/WS2db454920e96a9e51e63e3d11c0bf69084-7a92.html

GradleFx Documentation, Release 1.5.0

4.2. Complex properties 15

GradleFx Documentation, Release 1.5.0

4.2.2 airMobile

Property Name Convention Required Description
target apk false Specifies the mobile plat-

form for which the pack-
age is created.

ane - an AIR
native
extension
package

Android package targets:
apk - an
Android
package. A
package
produced
with this
target can
only be
installed on
an Android
device, not
an emulator.
apk-captive-
runtime - an
Android
package that
includes both
the
application
and a captive
version of the
AIR runtime.
A package
produced
with this
target can
only be
installed on
an Android
device, not
an emulator.
apk-debug -
an Android
package with
extra
debugging
information.
(The SWF
files in the
application
must also be
compiled
with
debugging
support.)
apk-
emulator -
an Android
package for
use on an
emulator
without
debugging
support. (Use
the
apk-debug
target to
permit
debugging on
both
emulators
and devices.)
apk-profile -
an Android
package that
supports
application
performance
and memory
profiling.

iOS package targets:
ipa-ad-hoc -
an iOS
package for
ad hoc
distribution.
ipa-app-
store - an
iOS package
for Apple
App store
distribution.
ipa-debug -
an iOS
package with
extra
debugging
information.
(The SWF
files in the
application
must also be
compiled
with
debugging
support.)
ipa-test - an
iOS package
compiled
without
optimization
or debugging
information.
ipa-debug-
interpreter -
functionally
equivalent to
a debug
package, but
compiles
more quickly.
However, the
ActionScript
bytecode is
interpreted
and not
translated to
machine
code. As a
result, code
execution is
slower in an
interpreter
package.
ipa-debug-
interpreter-
simulator -
functionally
equivalent to
ipa-debug-
interpreter,
but packaged
for the iOS
simulator.
Macintosh-
only. If you
use this
option, you
must also
include the
-platformsdk
option,
specifying
the path to
the iOS
Simulator
SDK.
ipa-test-
interpreter -
functionally
equivalent to
a test
package, but
compiles
more quickly.
However, the
ActionScript
bytecode is
interpreted
and not
translated to
machine
code. As a
result, code
execution is
slower in an
interpreter
package.
ipa-test-
interpreter-
simulator -
functionally
equivalent to
ipa-test-
interpreter,
but packaged
for the iOS
simulator.
Macintosh-
only. If you
use this
option, you
must also
include the
-platformsdk
option,
specifying
the path to
the iOS
Simulator
SDK.

extensionDir false The name of a directory
to search for native exten-
sions (ANE files). Either
an absolute path or a rela-
tive path from the project
directory.

targetDevice false Specify ios_simulator, the
serial number (Android),
or handle (iOS) of the
connected device. On
iOS, this parameter is re-
quired; on Android, this
paramater only needs to
be specified when more
than one Android device
or emulator is attached to
your computer and run-
ning. If the specified
device is not connected,
ADT returns exit code
14: Device error (An-
droid) or Invalid device
specified (iOS). If more
than one device or emula-
tor is connected and a de-
vice is not specified, ADT
returns exit code 2: Usage
error

provisioningProfile false The path to your iOS pro-
visioning profile. Relative
from your project direc-
tory.

outputExtension apk false The extension of the pack-
aged application.

platform android false The name of the platform
of the device. Specify ios
or android.

platformSdk false
The path to the platform SDK for the target device:

Android - The AIR
2.6+ SDK includes
the tools from the
Android SDK
needed to
implement the
relevant ADT
commands.
Only set this value
to use a different
version of the
Android SDK.
Also, the platform
SDK path does not
need to
be supplied if the
AIR_ANDROID_SDK_HOME
environment
variable is already
set.

iOS - The AIR
SDK ships with a
captive iOS SDK.
The platformsdk
option lets you
package
applications with
an
external SDK so
that you are not
restricted to using
the captive iOS
SDK.
For example, if you
have built an
extension with the
latest iOS SDK,
you can specify
that SDK when
packaging
your application.
Additionally, when
using ADT with the
iOS Simulator, you
must always
include the
platformsdk
option, specifying
the path to the iOS
Simulator SDK.

simulatorPlatformSdk false The path to the platform
SDK for the simulator.

simulatorTarget apk false Specifies the mobile plat-
form of the simulator. See
the target property for
more information.

simulatorTargetDevice false Specifies the device of
the simulator. See the
targetDevice prop-
erty for more information.

sampler false false (iOS only, AIR 3.4 and
higher) Enables the
telemetry-based Action-
Script sampler in iOS
applications.

connectHost n/a false The -connect flag tells the
AIR runtime on the de-
vice where to connect to a
remote debugger over the
network. Applicaple for
debug target type pack-
ages.

nonLegacyCompiler false false Which compiler to
use during packaging.
When true, it will en-
able the new compiler
which is faster. More
info: http://www.adobe.
com/devnet/air/articles/
ios-packaging-compiled-mode.
html

arch n/a false
(Android only, AIR 14 and higher) Application developers can use this argument to create APK for x86 platforms, it takes following values:

armv7 - ADT
packages APK for
the Android armv7
platform. This is
the default value
when no value is
specified.
x86 - ADT
packages APK for
the Android x86
platform.

hideAneLibSymbols false false (iOS only, AIR 3.4 and
higher) Application devel-
opers can use multiple na-
tive extensions from mul-
tiple sources and if the
ANEs share a common
symbol name, ADT gen-
erates a “duplicate sym-
bol in object file” er-
ror. Use the hideAneLib-
Symbols option to spec-
ify whether or not to make
the ANE library’s sym-
bols visible only to that
library’s sources (true) or
visible globally (false).
Settings this property to
‘true’ hides ANE sym-
bols, which resolves any
unintended symbol con-
flict issues.

16 Chapter 4. Properties/Conventions

http://www.adobe.com/devnet/air/articles/ios-packaging-compiled-mode.html
http://www.adobe.com/devnet/air/articles/ios-packaging-compiled-mode.html
http://www.adobe.com/devnet/air/articles/ios-packaging-compiled-mode.html
http://www.adobe.com/devnet/air/articles/ios-packaging-compiled-mode.html

GradleFx Documentation, Release 1.5.0

4.2.3 adl

Prop-
erty
Name

Con-
ven-
tion

Re-
quired

Description

pro-
file

false ADL will debug the application with the specified profile. Can have the following values:
desktop, extendedDesktop, mobileDevice

screen-
Size

false The simulated screen size to use when running apps in the mobileDevice profile on the desk-
top. To specify the screen size as a predefined screen type, look at the list provided here: http:
//help.adobe.com/en_US/air/build/WSfffb011ac560372f-6fa6d7e0128cca93d31-8000.html |
To specify the screen pixel dimensions directly, use the following format: widthX-
height:fullscreenWidthXfullscreenHeight

4.2.4 htmlWrapper

Property Name Convention Required Description
title project.description false The title of the html page
file “${project.name}.html” false Name of the html file
percentHeight ‘100’ false Height of the swf in the

html page
percentWidth ‘100’ false Width of the swf in the

html page
application project.name false Name of the swf object in

the HTML wrapper
swf project.name false The name of the swf that

is embedded in the HTML
page. The ‘.swf’ exten-
sion is added automati-
cally, so you don’t need to
specify it.

history ‘true’ false Set to true for deeplinking
support.

output project.buildDir false Directory in which the
html wrapper will be gen-
erated.

expressInstall ‘true’ false use express install
versionDetection ‘true’ false use version detection
source null false The relative path to your

custom html template
tokenReplacements

[application: wrap-
per.application,
percentHeight:
“$wrap-
per.percentHeight%”,
percentWidth:
“$wrap-
per.percentWidth%”,
swf: wrapper.swf,
title: wrapper.title

]

false A map of tokens which
will be replaced in your
custom template. The
keys have to be specified
as ${key} in your tem-
plate

4.2. Complex properties 17

http://help.adobe.com/en_US/air/build/WSfffb011ac560372f-6fa6d7e0128cca93d31-8000.html
http://help.adobe.com/en_US/air/build/WSfffb011ac560372f-6fa6d7e0128cca93d31-8000.html

GradleFx Documentation, Release 1.5.0

4.2.5 flexUnit

(Since GradleFx uses the FlexUnit ant tasks it also uses the same properties, more information about the properties
specified in this table can be found in the “Property Descriptions” section on this page: http://docs.flexunit.org/index.
php?title=Ant_Task)

Property
Name

Convention Re-
quired

Description

template Uses the inter-
nal template
provided by
GradleFx

false The path to your test runner template relative from the project directory

player ‘flash’ false Whether to execute the test SWF against the Flash Player or ADL. See
the “Property Descriptions” section on this page for more information:
http://docs.flexunit.org/index.php?title=Ant_Task

command FLASH_PLAYER_EXE
environment vari-
able

false The path to the Flash player executable which will be used to run the tests

toDir “${project.buildDirName}/reports”false Directory to which the test result reports are written
work-
ingDir

project.path false Directory to which the task should copy the resources created during com-
pilation.

halton-
failure

‘false’ false Whether the execution of the tests should stop once a test has failed

verbose ‘false’ false Whether the tasks should output information about the test results
local-
Trusted

‘true’ false The path specified in the ‘swf’ property is added to the local FlashPlayer
Trust when this property is set to true.

port ‘1024’ false On which port the task should listen for test results
buffer ‘262144’ false Data buffer size (in bytes) for incoming communication from the Flash

movie to the task. Default should in general be enough, you could possi-
bly increase this if your tests have lots of failures/errors.

timeout ‘60000’ false How long (in milliseconds) the task waits for a connection with the Flash
player

failure-
property

‘flexUnitFailed’ false If a test fails, this property will be set to true

headless ‘false’ false Allows the task to run headless when set to true.
display ‘99’ false The base display number used by Xvnc when running in headless mode.
includes [‘**/*Test.as’] false Defines which test classes are executed when running the tests
excludes [] false Defines which test classes are excluded from execution when running the

tests
swfName “TestRunner.swf” false the name you want to give to the resulting test runner application
addition-
alCom-
pilerOp-
tions

[] false A list of custom compiler options for the test runner application

ignore-
Failures

‘false’ false When enabled, failed tests will be ignored and won’t make the build fail

18 Chapter 4. Properties/Conventions

http://docs.flexunit.org/index.php?title=Ant_Task
http://docs.flexunit.org/index.php?title=Ant_Task
http://docs.flexunit.org/index.php?title=Ant_Task

GradleFx Documentation, Release 1.5.0

4.2.6 asdoc

Property Name Conven-
tion

Re-
quired

Description

outputDir ‘doc’ false The directory in which the asdoc documentation will be cre-
ated

additionalASDocOp-
tions

[] false Additional options for the asdoc compiler.

4.2.7 sdkAutoInstall

Property
Name

Con-
ven-
tion

Re-
quired

Description

show-
Prompts

true false Whether to show prompts during the installation or let it run in full auto mode.
Make sure you agree with all the licenses before turning this off

Note: All the available asdoc options (for Flex 4.6) can be found here: asdoc compiler options

4.3 Example usage (build.gradle)

buildscript {
repositories {

mavenLocal()
}
dependencies {

classpath group: 'org.gradlefx', name: 'gradlefx', version: '0.5'
}

}

apply plugin: 'gradlefx'

flexHome = System.getenv()['FLEX_SDK_LOCATION'] //take a custom environment variable
→˓which contains the Flex SDK location

srcDirs = ['/src/main/flex']

additionalCompilerOptions = [
'-target-player=10',
'-strict=false'

]

htmlWrapper {
title = 'My Page Title'
percentHeight = 80
percentWidth = 80

}

4.3. Example usage (build.gradle) 19

http://help.adobe.com/en_US/flex/using/WSd0ded3821e0d52fe1e63e3d11c2f44bc36-7ffa.html#WSd0ded3821e0d52fe1e63e3d11c2f44bb7b-7feb

GradleFx Documentation, Release 1.5.0

20 Chapter 4. Properties/Conventions

CHAPTER 5

Dependency Management

5.1 Overview

The GradleFx plugin adds the following configurations to your project:

• merged: This configuration can be used for dependencies that should be merged in the SWC/SWF. Same as
-compiler.library-path

• internal: The dependency content will be merged in the SWC/SWF. Same as -compiler.include-libraries

• external: The dependency won’t be included in the SWC/SWF. Same as -compiler.external-library-path

• rsl: The SWF will have a reference to load the dependency at runtime. Same as -runtime-shared-library-path

• test: This is for dependencies used in unit tests

• theme: The theme that will be used by the application. Same as -theme

You can specify your dependencies like this:

dependencies {
external group: 'org.springextensions.actionscript', name: 'spring-actionscript-

→˓core', version: '1.2-SNAPSHOT', ext: 'swc'
external group: 'org.as3commons', name: 'as3commons-collections', version: '1.1',

→˓ext: 'swc'
external group: 'org.as3commons', name: 'as3commons-eventbus', version: '1.1',

→˓ext: 'swc'

merged group: 'org.graniteds', name: 'granite-swc', version: '2.2.0.SP1', ext: 'swc
→˓'

merged group: 'org.graniteds', name: 'granite-essentials-swc', version: '2.2.0.SP1
→˓', ext: 'swc'

theme group: 'my.organization', name: 'fancy-theme', version: '1.0', ext: 'swc'
}

21

GradleFx Documentation, Release 1.5.0

5.2 Project Lib Dependencies

You can also add dependencies to other projects, as described here in the Gradle documentation:
https://docs.gradle.org/2.4/userguide/multi_project_builds.html#sec:project_jar_dependencies

22 Chapter 5. Dependency Management

https://docs.gradle.org/2.4/userguide/multi_project_builds.html#sec:project_jar_dependencies

CHAPTER 6

Tasks

6.1 Overview

The GradleFx plugin adds the following tasks to your project:

23

GradleFx Documentation, Release 1.5.0

Task name Depends on Description
clean n/a Deletes the build directory
compileFlex copyresources Creates a swc or swf file from your code. The ‘type’

property defines the type of file
package compile Packages the generated swf file into an .air package
copyresources n/a Copies the resources from the source ‘resources’ di-

rectory to the build directory
copytestre-
sources

n/a Copies the test resources from the test ‘resources’ di-
rectory to the build directory

publishFx n/a Copies the files from the build directory to the publish
directory.

createHtml-
Wrapper

n/a Creates an HTML wrapper for the project’s swf

testFx copytestresources Runs the FlexUnit tests
asdoc compile Creates asdoc documentation for your sources
packageMobile compile Packages the mobile app for a release version.
packageSimula-
torMobile

compile Packages the mobile app for the simulator.

installMobile uninstallMobileApp packageMobile install app to target device
installSimula-
torMobile

uninstallSimulatorMobileApp packa-
geSimulatorMobileApp

Installs the app on the simulator.

uninstallMobile Uninstalls the app from the device.
uninstallSimu-
latorMobile

Uninstalls the app from the simulator.

launchMobile installMobileApp Launches the app to a certain device.
launchSimula-
torMobile

installSimulatorMobileApp Launches the app on the simulator.

launchAdl compile Task which launches ADL.

The Flashbuilder plugin adds the following tasks to your project:

Task name Depends on Description
flashbuilder n/a Creates the Adobe Flash Builder project files
flashbuilderClean n/a Deletes the Adobe Flash Builder project files

The Idea plugin adds the following tasks to your project:

Task name Depends on Description
idea n/a Creates the IDEA Intellij project files
ideaClean n/a Deletes the IDEA Intellij project files

The Scaffold plugin adds the following tasks to your project:

Task name Depends on Description
scaffold n/a Generates directory structure and main application class

24 Chapter 6. Tasks

GradleFx Documentation, Release 1.5.0

6.2 Adding additional logic

Sometimes you may want to add custom logic right after or before a task has been executed. If you want to add some
logging before or after the compile task, you can just do this:

compileFlex.doFirst { println “this gets printed before the compile task starts”

}

compileFlex.doLast { println “this gets printed after the compile task has been completed”

}

6.2. Adding additional logic 25

GradleFx Documentation, Release 1.5.0

26 Chapter 6. Tasks

CHAPTER 7

AIR

This page describes how you need to configure your AIR project. Only a few things are needed for this.

Note: There’s a working example available in the GradleFx examples project: https://github.com/GradleFx/
GradleFx-Examples/tree/master/air-single-project

7.1 Project type

First you’ll need to specify the project type, which in this case is ‘air’. You do this as follows:

type = 'air'

7.2 AIR descriptor file

Then you’ll need an AIR descriptor file (like in every AIR project). If you give this file the same name as your project
and put it in the default source directory (src/main/actionscript) then you don’t have to configure anything because this
is the convention. If you want to deviate from this convention you can specify the location like this:

air {
applicationDescriptor 'src/main/resources/airdescriptor.xml'

}

7.3 Certificate

Then you’ll need a certificate to sign the AIR package. This certificate has to be a *.p12 file. GradleFx uses the
project name for the certificate by convention, so if your certificate is located at the root of your project and has

27

https://github.com/GradleFx/GradleFx-Examples/tree/master/air-single-project
https://github.com/GradleFx/GradleFx-Examples/tree/master/air-single-project

GradleFx Documentation, Release 1.5.0

a %myprojectname%.p12 filename; then you don’t have to configure anything. If you want to deviate from this
convention, then you can do this by overriding the air.keystore property:

air {
keystore 'certificate.p12'

}

You also need to specify the password for the certificate. This property is required. You can specify this as follows:

air {
storepass 'mypassword'

}

If you don’t want to put the password in the build file then you can use the properties system of Gradle, see the Gradle
documentation for more information about this: http://www.gradle.org/docs/current/userguide/tutorial_this_and_that.
html#sec:gradle_properties_and_system_properties

7.4 Adding files to the AIR package

In most cases you will want to add some files to your AIR package, like application icons which are being specified in
your application descriptor like this:

<icon>
<image32x32>assets/appIcon.png</image32x32>

</icon>

Only specifying those icons in your application descriptor won’t do it for the compiler, so you need to provide them
to it. With GradleFx you can do that with the includeFileTrees property, which looks like this:

air {
includeFileTrees = [

fileTree(dir: 'src/main/actionscript/', include: 'assets/appIcon.png')
]

}

You have to make sure that the ‘include’ part always has the same name as the one specified in your application
descriptor, otherwise the compiler won’t recognize it. The fileTree also accepts patterns and multiple includes, more
info about this can be found in the Gradle documentation: http://gradle.org/docs/current/userguide/working_with_
files.html

7.4.1 More flexible approach

While the benefit of the includeFileTrees option may be its convenience, it may not always fit your needs. Certainly
when you need to add a lot of files to your build. The number of paths you can specify is limited by the air packager,
and since the includeFileTrees always adds individual paths instead of directories, this can potentially reach the max-
imum and cause a packager error. You can avoid this by manually specifying the compiler options to add individual
directories instead of files, with the air.fileOptions property:

air {
fileOptions = [

'-C',
'src/main/actionscript/',
'sound'

(continues on next page)

28 Chapter 7. AIR

http://www.gradle.org/docs/current/userguide/tutorial_this_and_that.html#sec:gradle_properties_and_system_properties
http://www.gradle.org/docs/current/userguide/tutorial_this_and_that.html#sec:gradle_properties_and_system_properties
http://gradle.org/docs/current/userguide/working_with_files.html
http://gradle.org/docs/current/userguide/working_with_files.html

GradleFx Documentation, Release 1.5.0

(continued from previous page)

]
}

7.4. Adding files to the AIR package 29

GradleFx Documentation, Release 1.5.0

30 Chapter 7. AIR

CHAPTER 8

Mobile

This page describes how you can setup GradleFx to build your mobile project.

Note: There’s a working example available in the GradleFx examples project: https://github.com/GradleFx/
GradleFx-Examples/tree/master/mobile-android

Note: For a complete list of mobile convention properties, take a look at the airMobile and adt sections in the
Properties/Conventions page.

8.1 General setup

You’ll have to define the project as a mobile project. You can define this as follows:

type = 'mobile'

For other general AIR setup instructions, check out the AIR documentation page: AIR

The mobile properties have conventions for Android, so if you’re building for this platform, you’re all set (unless you
want to tune them a bit). For iOS you’ll have to override some convention properties. Check out the platform specific
sections for more information.

8.2 Android

8.2.1 Target & simulatorTarget

To specify how you want to package for Android, you can define the target property for installing to a device, or
simulatorTarget for installing to a simulator. This property defaults to apk for the target property and to

31

https://github.com/GradleFx/GradleFx-Examples/tree/master/mobile-android
https://github.com/GradleFx/GradleFx-Examples/tree/master/mobile-android

GradleFx Documentation, Release 1.5.0

apk-simulator for the simulatorTarget property.

These are all the targets you can use for Android:

apk - an Android package. A package produced with this target can only be installed on an Android device, not an
emulator. |
apk-captive-runtime - an Android package that includes both the application and a captive version of the AIR
runtime. A package produced with this target can only be installed on an Android device, not an emulator. |
apk-debug - an Android package with extra debugging information. (The SWF files in the application must also be
compiled with debugging support.) |
apk-emulator - an Android package for use on an emulator without debugging support. (Use the apk-debug target to
permit debugging on both emulators and devices.) |
apk-profile - an Android package that supports application performance and memory profiling.

You can specify it like this:

airMobile {
target = 'apk-debug'

}

Or like this when you use any of the simulator tasks:

airMobile {
simulatorTarget = 'apk-emulator'

}

8.3 iOS

8.3.1 Platform

The platform convention property defines the platform for which you want to deploy. For iOS this value should be
the following:

airMobile {
platform = 'ios'

}

8.3.2 Target & simulatorTarget

To specify how you want to package for iOS, you can define the target property for installing to a device, or
simulatorTarget for installing to a simulator. For iOS the target property is required, since it defaults to an
Android value. The same is true for the simulatorTarget property in case you want to use a simulator.

These are all the targets you can use for iOS:

ipa-ad-hoc - an iOS package for ad hoc distribution. |
ipa-app-store - an iOS package for Apple App store distribution. |
ipa-debug - an iOS package with extra debugging information. (The SWF files in the application must
also be compiled with debugging support.) |
ipa-test - an iOS package compiled without optimization or debugging information. |

32 Chapter 8. Mobile

GradleFx Documentation, Release 1.5.0

ipa-debug-interpreter - functionally equivalent to a debug package, but compiles more quickly.
However, the ActionScript bytecode is interpreted and not translated to machine code. As a result, code
execution is slower in an interpreter package. |
ipa-debug-interpreter-simulator - functionally equivalent to ipa-debug-interpreter, but packaged for
the iOS simulator. Macintosh-only. If you use this option, you must also include the -platformsdk option,
specifying the path to the iOS Simulator SDK. |
ipa-test-interpreter - functionally equivalent to a test package, but compiles more quickly. However, the
ActionScript bytecode is interpreted and not translated to machine code. As a result, code execution is
slower in an interpreter package. |
ipa-test-interpreter-simulator - functionally equivalent to ipa-test-interpreter, but packaged for the iOS
simulator. Macintosh-only. If you use this option, you must also include the -platformsdk option,
specifying the path to the iOS Simulator SDK.

You can specify it like this:

airMobile {
target = 'ipa-debug'

}

Or like this when you use any of the simulator tasks:

airMobile {
simulatorTarget = 'ipa-debug-interpreter-simulator'

}

8.3.3 Defining the target device

For iOS you have to define the target device. This should be the ios_simulator or handle of the iOS device.

airMobile {
targetDevice 22

}

You can find the handle of the attached devices with the following command:

> adt -devices -platform ios

8.3.4 Provisioning Profile

To package an application for iOS, you need a provisioning profile provided by Apple. You can define it like this:

airMobile {
provisioningProfile = 'AppleDevelopment.mobileprofile'

}

8.4 Tasks

To package a mobile project:

> packageMobile
> packageSimulatorMobile

8.4. Tasks 33

GradleFx Documentation, Release 1.5.0

To install a mobile project on a device/simulator:

> installMobile
> installSimulatorMobile

To uninstall a mobile project from a device/simulator:

> uninstallMobile
> uninstallSimulatorMobile

To launch a mobile project on a device/simulator:

> launchMobile
> launchSimulatorMobile

8.5 Using native extensions (ANE)

To use an ANE in your project you simple have to specify it as a dependency:

dependencies {
external group: 'org.mycompany', name: 'myane', version: '1.0', ext: 'ane'

}

8.6 Choosing a packaging mode

Adobe AIR now supports two packaging compiler modes, a legacy compiler (which is slower) and a new compiler. For
more information on this new compiler see http://www.adobe.com/devnet/air/articles/ios-packaging-compiled-mode.
html

You can explicitly choose to use the new compiler by setting the nonLegacyCompiler property to true:

airMobile {
nonLegacyCompiler = true

}

34 Chapter 8. Mobile

http://www.adobe.com/devnet/air/articles/ios-packaging-compiled-mode.html
http://www.adobe.com/devnet/air/articles/ios-packaging-compiled-mode.html

CHAPTER 9

FlexUnit

GradleFx supports automatically running tests written with FlexUnit 4.1.

9.1 Setting up testing in GradleFx

First you need to specify the FlexUnit dependencies. You can download the required FlexUnit libraries from their site
and then deploy them on your repository (recommended) or use file-based dependencies. Once you’ve done that you
have to define them as dependencies in your build file.

1. When you have deployed the artifacts on your own repository:

dependencies {
test group: 'org.flexunit', name: 'flexunit-tasks', version: '4.1.0-8', ext:

→˓'swc'
test group: 'org.flexunit', name: 'flexunit', version: '4.1.0-8', ext: 'swc'
test group: 'org.flexunit', name: 'flexunit-cilistener', version: '4.1.0-8',

→˓ext: 'swc'
test group: 'org.flexunit', name: 'flexunit-uilistener', version: '4.1.0-8',

→˓ext: 'swc'
}

2. When you have FlexUnit installed on your machine:

def flexunitHome = System.getenv()['FLEXUNIT_HOME'] //FLEXUNIT_HOME is an
→˓environment variable referencing the FlexUnit install location
dependencies {

test files("${flexunitHome}/flexunit-4.1.0-8-flex_4.1.0.16076.swc",
"${flexunitHome}/flexUnitTasks-4.1.0-8.jar",
"${flexunitHome}/flexunit-cilistener-4.1.0-8-4.1.0.16076.swc",
"${flexunitHome}/flexunit-uilistener-4.1.0-8-4.1.0.16076.swc")

}

Then you’ll need to specify the location of the Flash Player executable. GradleFx uses the FLASH_PLAYER_EXE
environment variable by convention which should contain the path to the executable. If you don’t want to use this

35

GradleFx Documentation, Release 1.5.0

environment variable you can override this with the ‘flexUnit.command’ property. You can download the executable
from here (these links may get out of date, look for the Flash Player standalone/projector builds on the Adobe site):

• For Windows

• For Mac

• For Linux

And that’s basically it in terms of setup when you follow the following conventions:

• Use src/test/actionscript as the source directory for your test classes.

• Use src/test/resources as the directory for your test resources.

• You end all your test class names with “Test.as”

GradleFx will by convention execute all the *Test.as classes in the test source directory when running the tests.

9.2 Running the tests

You can run the FlexUnit tests by executing the “gradle testFx” command on the command-line.

9.3 Skipping the tests

In case you want to execute a task which depends on the test task, but you don’t want to execute the tests, then you
can skip the test execution by excluding the test task with the ‘-x testFx’ parameter. Like this:

> gradle build -x testFx

9.4 Customization

9.4.1 Changing the source/resource directories

You can change these directories by specifying the following properties like this:

testDirs = ['src/testflex']
testResourceDirs = ['src/testresources']

9.4.2 Include/Exclude test classes

You can include or exclude test classes which are being run by specifying a pattern to some GradleFx properties. To
specify the includes you can use the flexUnit.includes property:

flexUnit {
includes = ['**/Test*.as'] //will include all actionscript classes which start

→˓with 'Test'
}

To specify the excludes you can use the flexUnit.excludes property:

36 Chapter 9. FlexUnit

http://download.macromedia.com/pub/flashplayer/updaters/10/flashplayer_10_sa_debug.exe
http://download.macromedia.com/pub/flashplayer/updaters/10/flashplayer_10_sa_debug.app.zip
http://download.macromedia.com/pub/flashplayer/updaters/10/flashplayer_10_sa_debug.tar.gz

GradleFx Documentation, Release 1.5.0

flexUnit {
excludes = ['**/*IntegrationTest.as']

}

9.4.3 Use a custom test runner template

If you want to customize the test application which runs your unit tests, you can create a custom template for
this. An example of such a template can be found here https://github.com/GradleFx/GradleFx-Examples/blob/master/
flexunit-single-project/src/test/resources/CustomFlexUnitRunner.mxml

This template accepts two parameters:

• fullyQualifiedNames: These are the fully qualified names of the test classes (e.g. ‘org.gradlefx.SomeTest’)

• testClasses: These are the test class names (e.g. ‘SomeTest’)

Once you’ve created your template, you can specify it in your build script:

flexUnit {
template = 'src/test/resources/CustomFlexUnitRunner.mxml'

}

9.4.4 Add custom compiler options

In some cases you want to specify custom compiler options to your test application, for example for keeping certain
metadata. You can do this by using the flexUnit.additionalCompilerOptions property:

flexUnit {
additionalCompilerOptions = [

'-incremental=true',
]

}

9.4.5 Ignoring test failures

By default, when a test fails the build will fail. If you want to ignore test failures, then you can do this with the
following property:

flexUnit {
ignoreFailures = true

}

9.4.6 Other customizations

There are a lot more properties available on flexUnit.*, all these can be found on the properties description page.

9.4. Customization 37

https://github.com/GradleFx/GradleFx-Examples/blob/master/flexunit-single-project/src/test/resources/CustomFlexUnitRunner.mxml
https://github.com/GradleFx/GradleFx-Examples/blob/master/flexunit-single-project/src/test/resources/CustomFlexUnitRunner.mxml

GradleFx Documentation, Release 1.5.0

9.5 FAQ

9.5.1 My unit tests hang and then end with a SocketTimeoutException, what is
wrong?

This generally means some kind of incompatibility between the AIR, Flash and SWF version you’re using. By default,
Flex and AIR target a certain Flash Player version by compiling against a certain SWF version. To find out what is
wrong, we need to gather some info first.

First we need to find out against which SWF version your TestRunner SWF has been compiled by GradleFx.
The Flex and AIR SDKs come with a handy tool to determine the SWF version of a SWF, called swfdump,
which is located in the %FLEX_AIR_SDK%/bin folder. Execute this tool against the TestRunner.swf located in
%YOUR_PROJECT%/build/reports folder. Stop its executing right after it starts, because we’re only interested in the
first part of its output (it outputs quite a lot).

> %FLEX_AIR_SDK%/bin/swfdump %YOUR_PROJECT%/build/reports/TestRunner.swf

The output might look like this:

Adobe SWF Dump Utility
Version 2.0.0 build 354139
Copyright 2003-2012 Adobe Systems Incorporated. All rights reserved.

<?xml version="1.0" encoding="UTF-8"?>
<!-- Parsing swf file:/C:/myproject/build/reports/TestRunner.swf -->
<swf xmlns="http://macromedia/2003/swfx" version="26" framerate="24.0" size=
→˓"10000x7500" compressed="true" >

So in this output we can see that this SWF uses version 26. This is something we can match against the Flash Player
and Adobe AIR compatibility list to find out whether this matches your AIR SDK. When I look up SWF version 26 I
can see it’s being used by default by AIR SDK 15.

If this isn’t the expected AIR SDK version, then you might be using a Flex version which targets a newer Flash Player
version than your AIR SDK supports. So either you upgrade your AIR SDK to the version which matches the SWF
version (see Flash Player and Adobe AIR compatibility list), or you specify the ‘-swf-version’ compiler option to
FlexUnit so that it matches the SWF version supported by your AIR SDK:

flexUnit {
additionalCompilerOptions = [

'-swf-version=25'
]

}

38 Chapter 9. FlexUnit

http://www.adobe.com/devnet/articles/flashplayer-air-feature-list.html
http://www.adobe.com/devnet/articles/flashplayer-air-feature-list.html
http://www.adobe.com/devnet/articles/flashplayer-air-feature-list.html

CHAPTER 10

Html Wrapper

GradleFx allows you to create a html wrapper for your application by using the createHtmlWrapper task and the
htmlWrapper convention properties.

10.1 Usage

10.1.1 Execution

You can create the html wrapper files without having to specify any htmlWrapper convention properties. Just execute
the createHtmlWrapper task like this and it will use the conventions:

>gradle createHtmlWrapper

10.1.2 Customization

You can customize the conventions by overriding the htmlWrapper properties, like this:

htmlWrapper {
title = 'My Page Title'
percentHeight = 80
percentWidth = 80

}

Note: For a full list of htmlWrapper properties, visit the properties section: Properties/Conventions

You can also provide your own html page which contains replaceable tokens. This can be done with the help of the
htmlWrapper.source and htmlWrapper.tokenReplacements properties. source is the relative path to an existing HTML-
file that can be provided as a template instead of using the default one. If the property isn’t provided, the template will
be generated with the default html file.

39

GradleFx Documentation, Release 1.5.0

tokenReplacements is map of replacements for tokens in the provided source file. If the template contains the token
${swf}, it’ll be replaced with ‘example’ if this property contains a [swf:example] mapping. If source isn’t specified,
this property will be ignored.

You can use this as follows:

htmlWrapper {
source = 'myCustomTemplate.html'
tokenReplacements = [swf:example]

}

40 Chapter 10. Html Wrapper

CHAPTER 11

AsDoc

GradleFx has support for generating asdoc documentation for your swc-based projects.

11.1 How to use it

No specific configuration is needed for this, you can simply execute the “gradle asdoc” command and it will create a
doc folder in your project which will contain the html documentation files.

11.1.1 Creating a fat swc

A fat swc is a swc file which has asdoc information embedded in it so that Adobe Flash Builder can show the doc-
umentation while you’re working in it. GradleFx has a handly property for this which, when turned on, will always
create a fat swc when you compile your project. This property can be set like this:

fatSwc = true

11.1.2 Customizing the asdoc generation

GradleFx also provides some properties which can be used to customize the asdoc generation. One of them is the
asdoc.outputDir property, which allows you to specify a different destination directory for the asdoc documentation.
This property can be used as follows:

asdoc {
outputDir 'documentation' //will create the documentation in the

→˓%projectdir%/documentation folder
}

Another property which allows the most customization is the asdoc.additionalASDocOptions property. It can be used
like the additionalCompilerOptions, but this one accepts asdoc compiler options. These options can be found here (for
Flex 4.6): asDoc compiler options

41

http://help.adobe.com/en_US/flex/using/WSd0ded3821e0d52fe1e63e3d11c2f44bc36-7ffa.html#WSd0ded3821e0d52fe1e63e3d11c2f44bb7b-7feb

GradleFx Documentation, Release 1.5.0

The property can be used as follows:

asdoc {
additionalASDocOptions = [

'-strict=false',
'-left-frameset-width 200'

]
}

42 Chapter 11. AsDoc

CHAPTER 12

Localization

GradleFx provides an easy way to specify locales instead of having to specify the compiler arguments. The two
convention properties of importance are:

• localeDir: This defines the directory in which locale folders are located (relative from the project root). The
convention here is ‘src/main/locale’

• locales: Defines a list of locales used by your application, like en_US, nl_BE, etc. This property has no default.

Let’s say you want to support the en_GB and nl_BE locales. Then you could have the following directory structure:

• %PROJECT_ROOT%/src/main/locale/en_GB/resources.properties

• %PROJECT_ROOT%/src/main/locale/nl_BE/resources.properties

Because ‘src/main/locale’ is already the default value for the localeDir property you only have to specify the locales,
like this:

locales = ['en_GB', 'nl_BE']

You can also change the default value of the localeDir in case you don’t want to follow the convention like this:

localeDir = 'locales' //directory structure will then look like this: %PROJECT_ROOT%/
→˓locales/en_GB

43

GradleFx Documentation, Release 1.5.0

44 Chapter 12. Localization

CHAPTER 13

IDE Plugin

This feature mimics the behavior of the ‘eclipse’, ‘idea’, etc. Gradle plugins for Flex projects. It generates IDE
configuration files and puts the dependencies from the Gradle/Maven cache on the IDE’s build path. It consists of
subplugins for both FlashBuilder and Intellij which can be applied separately.

If you want support for all supported IDE’s load the plugin like this:

apply plugin: 'ide'

In any other case just apply the required subplugins.

13.1 Sub-plugins

There is a plugin for each of the following IDE’s; each plugin has its matching task:

IDE load plugin execute task

IDE Load plugin Execute task
FlashBuilder apply plugin: ‘flashbuilder’ gradle flashbuilder
IntelliJ IDEA apply plugin: ‘ideafx’ gradle idea

The IDEA plugin was named ideafx to avoid conflicts with the existing ‘java’ idea plugin.

Every IDE plugin depends on the Scaffold plugin (cf. Templates Plugin) that generates the directory structure and the
main application file.

Each of these plugins also has a matching clean task; for instance you could remove all the FlashBuilder configuration
files from a project by executing gradle flashbuilderClean.

13.2 FlashBuilder plugin

Load the plugin:

45

GradleFx Documentation, Release 1.5.0

apply plugin: 'flashbuilder'

Run the associated task:

gradle flashbuilder

With all conventions the output for a swf application might be something like this:

:my-first-app:scaffold
Creating directory structure

src/main/actionscript
src/main/resources
src/test/actionscript
src/test/resources

Creating main class
src/main/actionscript/Main.mxml

::my-first-app:flashbuilder
Verifying project properties compatibility with FlashBuilder

OK
Creating FlashBuilder project files

.project

.actionScriptProperties

.flexProperties

BUILD SUCCESSFULL

To clean the project, i.e. remove all FlashBuilder configuration files:

gradle flashbuilderClean

13.3 IDEA Intellij plugin

Load the plugin:

apply plugin: 'ideafx'

Run the associated task:

gradle idea

With all conventions the output for a swf application might be something like this:

:my-first-app:scaffold
Creating directory structure

src/main/actionscript
src/main/resources
src/test/actionscript
src/test/resources

Creating main class
src/main/actionscript/Main.mxml

:my-first-app:idea
Verifying project properties compatibility with IntelliJ IDEA
Creating IntelliJ IDEA project files

BUILD SUCCESSFUL

46 Chapter 13. IDE Plugin

GradleFx Documentation, Release 1.5.0

To clean the project, i.e. remove all IDEA configuration files:

gradle ideaClean

13.3. IDEA Intellij plugin 47

GradleFx Documentation, Release 1.5.0

48 Chapter 13. IDE Plugin

CHAPTER 14

Templates Plugin

14.1 Overview

The Templates plugin is a feature similar to gradle-templates that can generate default directory structures and/or
classes. As of GradleFx v0.5 this plugin has only very partially been implemented. Actually only the automatic
generation of directory structure and the main application file (+ the descriptor file for AIR projects) is currently
available, as it is a dependency required by the IDE Plugin. Further development is not on our priority list for the time
being.

Load the plugin like so:

apply plugin: 'templates'

14.2 Sub-plugins

As of GradleFx v0.5 only one sub-plugin exists:

• Scaffold plugin: generates directory structure and main application class

This means that at the moment apply plugin: ‘templates’ and apply plugin: ‘scaffold’ will both result in the same tasks
being available.

14.3 Scaffold plugin

Load the plugin:

apply plugin: 'scaffold'

The scaffold task is now available to you. It is the only available task for now. To use it execute gradle
scaffold at the command line.

49

https://launchpad.net/gradle-templates

GradleFx Documentation, Release 1.5.0

With all conventions this will result in the following output for a swf project:

$ gradle scaffold
:my-first-app:scaffold
Creating directory structure

src/main/actionscript
src/main/resources
src/test/actionscript
src/test/resources

Creating main class
src/main/actionscript/Main.mxml

BUILD SUCCESSFUL

14.3.1 Application descriptor

In an air or mobile project an application descriptor file will also be created based on the air.applicationDescriptor
property:

src/main/actionscript/Main-app.xml

14.3.2 Localization

If you’ve defined some locales in your build script (say locales = ['nl_BE', 'fr_BE']), directories for
these locales will also be created:

src/main/locale/nl_BE
src/main/locale/fr_BE

50 Chapter 14. Templates Plugin

CHAPTER 15

Indices and tables

• genindex

• modindex

• search

51

	Where to start
	Basic Setup
	Requirements
	Using the plugin in your project
	Setting up the Flex/Air SDK
	Defining the project type
	Flex or pure Actionscript?

	Flex/AIR SDK Auto Install
	Overview
	Dependency types
	Apache Flex SDK dependencies

	Properties/Conventions
	Standard Properties
	Complex properties
	Example usage (build.gradle)

	Dependency Management
	Overview
	Project Lib Dependencies

	Tasks
	Overview
	Adding additional logic

	AIR
	Project type
	AIR descriptor file
	Certificate
	Adding files to the AIR package

	Mobile
	General setup
	Android
	iOS
	Tasks
	Using native extensions (ANE)
	Choosing a packaging mode

	FlexUnit
	Setting up testing in GradleFx
	Running the tests
	Skipping the tests
	Customization
	FAQ

	Html Wrapper
	Usage

	AsDoc
	How to use it

	Localization
	IDE Plugin
	Sub-plugins
	FlashBuilder plugin
	IDEA Intellij plugin

	Templates Plugin
	Overview
	Sub-plugins
	Scaffold plugin

	Indices and tables

